

German Research Center for Artificial Intelligence

Mediators: Conversational Agents Explaining NLP Model Behavior

Nils Feldhus, Ajay Madhavan Ravichandran, Sebastian Möller

German Research Center for Artificial Intelligence (DFKI), Berlin Speech and Language Technology group

July 23, 2022 IJCAI-ECAI 2022 Workshop on Explainable Artificial Intelligence (XAI)

Sentiment Analysis

 $p(y|\mathbf{x}; \theta) \mid y$

х	the year 's best and most unpredictable comedy	0.91	pos
x	we never feel anything for these characters	0.95	neg
x	handsome but unfulfilling suspense drama	0.18	neg

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. 2013. Andreas Madsen, Siva Reddy, and A. P. Sarath Chandar. Post-hoc interpretability for neural NLP: A survey. 2022.

		$p(y \mathbf{x}; heta) \mid y$	c
\mathbf{x}	the year 's best and most unpredictable comedy	0.91 pos	pos
\mathbf{x}	we never feel anything for these characters	0.95 neg	neg
\mathbf{x}	handsome but unfulfilling suspense drama	0.18 neg	pos

		$p(y \mathbf{x}; \theta)$	y c
x	the year 's best and most unpredictable comedy	0.91 p	os pos
x	we never feel anything for these characters	0.95 n	eg neg
\mathbf{x}	handsome but unfulfilling suspense drama	0.18 n	eg pos

• static : One-off explanations do not allow increased interaction (Lakkaraju et al., 2022)

- $p(y|\mathbf{x};\theta)$ \boldsymbol{y} cthe year 's best and most unpredictable comedy \mathbf{x} 0.91 pos pos we never feel anything for these characters 0.95 neg \mathbf{x} neg handsome but unfulfilling suspense drama 0.18 \mathbf{x} neg pos
- static : One-off explanations do not allow increased interaction (Lakkaraju et al., 2022)
- incomplete : Missing context / narrative (Jacovi et al., 2022)

- $p(y|\mathbf{x};\theta)$ \boldsymbol{y} cthe year 's best and most unpredictable comedy \mathbf{x} 0.91 pos pos we never feel anything for these characters 0.95 neg \mathbf{x} neg handsome but unfulfilling suspense drama 0.18 \mathbf{x} neg pos
- static : One-off explanations do not allow increased interaction (Lakkaraju et al., 2022)
- incomplete : Missing context / narrative (Jacovi et al., 2022)
- high cognitive load : Humans select only most relevant causes for an event (Miller, 2019)

- $p(y|\mathbf{x};\theta)$ \boldsymbol{y} cthe year 's best and most unpredictable comedy \mathbf{x} 0.91 pos pos we never feel anything for these characters 0.95 \mathbf{x} neg neg handsome but unfulfilling suspense drama 0.18 х neg pos
- static : One-off explanations do not allow increased interaction (Lakkaraju et al., 2022)
- incomplete : Missing context / narrative (Jacovi et al., 2022)
- high cognitive load : Humans select only most relevant causes for an event (Miller, 2019)
- misaligned : Laypeople might misinterpret the information (Schuff et al., 2022)

Andreas Madsen, Siva Reddy, and A. P. Sarath Chandar. Post-hoc interpretability for neural NLP: A survey. 2022. Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer Singh. Rethinking explainability as a dialogue: A practitioner's perspective. Alon Jacovi, Jasmijn Bastings, Sebastian Gehrmann, Yoav Goldberg, and Katja Filippova. Diagnosing Al explanation methods with folk concepts of behavior. Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Hendrik Schuff. Alon Jacovi. Heike Adel. Yoav Goldberg. and Neoc Thang Yu. Human interpretation of saliency-based explanation over text.

Method	Question / User utterance	Explanation / Response
Feature Attribution		

Method	Question / User utterance	Explanation / Response
Feature Attribution	Which tokens are most important for the prediction?	

Method	Question / User utterance	Explanation / Response
Feature Attribution	Which tokens are most important for the prediction?	<i>best</i> and <i>unpredictable</i> are most important.
Adversarial Examples	What would break the model's prediction?	

Method	Question / User utterance	Explanation / Response
Feature Attribution	Which tokens are most important for the prediction?	<i>best</i> and <i>unpredictable</i> are most important.
Adversarial Examples	What would break the model's prediction?	Changing <u>best</u> to <u>finest</u> flips it to <u>negative</u> .
Influential Examples	What training examples influenced the prediction?	

\Rightarrow Model prediction y = positive

Method	Question / User utterance	Explanation / Response
Feature Attribution	Which tokens are most important for the prediction?	<i>best</i> and <i>unpredictable</i> are most important.
Adversarial Examples	What would break the model's prediction?	Changing <u>best</u> to <u>finest</u> flips it to <u>negative</u> .
Influential Examples	What training examples influenced the prediction?	<u>a delightfully unpredictable</u> , hilarious comedy is an influential instance also classified as positive.
Model Rationales	What would a generated natural language explanation be?	

Extended from: Andreas Madsen, Siva Reddy, and A. P. Sarath Chandar. Post-hoc interpretability for neural NLP: A survey.

\Rightarrow Model prediction y = positive

Method	Question / User utterance	Explanation / Response
Feature Attribution	Which tokens are most important for the prediction?	<i>best</i> and <i>unpredictable</i> are most important.
Adversarial Examples	What would break the model's prediction?	Changing <u>best</u> to <u>finest</u> flips it to <u>negative</u> .
Influential Examples	What training examples influenced the prediction?	<i>a delightfully unpredictable , hilarious comedy</i> is an influential instance also classified as positive.
Model Rationales	What would a generated natural language explanation be?	Unpredictable comedies are funny.

Extended from: Andreas Madsen, Siva Reddy, and A. P. Sarath Chandar. Post-hoc interpretability for neural NLP: A survey.

Motivation

NLP + XAI

Interactivity and framing the explanation process as a dialogue = hot topic in HCI!
 Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
 Daniel S. Weld and Gagan Bansal. The challenge of crafting intelligible intelligence.
 Q. Vera Liao and Kush R. Varshney. Human-centered explainable AI (XAI): from algorithms to user experiences.
 Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer Singh. Rethinking explainability as a dialogue: A practitioner's perspective.
 ...
 ...

Motivation

NLP + XAI

Interactivity and framing the explanation process as a dialogue = hot topic in HCI!
 Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
 Daniel S. Weld and Gagan Bansal. The challenge of crafting intelligible intelligence.
 Q. Vera Liao and Kush R. Varshney. Human-centered explainable AI (XAI): from algorithms to user experiences.
 Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer Singh. Rethinking explainability as a dialogue: A practitioner's perspective.
 ...

• No prior work has picked this up for NLP problems / language models!

Motivation

NLP + XAI

Interactivity and framing the explanation process as a dialogue = hot topic in HCI!
 Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
 Daniel S. Weld and Gagan Bansal. The challenge of crafting intelligible intelligence.
 Q. Vera Liao and Kush R. Varshney. Human-centered explainable AI (XAI): from algorithms to user experiences.
 Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer Singh. Rethinking explainability as a dialogue: A practitioner's perspective.
 ...
 ...

• No prior work has picked this up for NLP problems / language models!

Key factors motivating the need for conversational agents

- 1. Flexibility of natural language
- 2. Complementary view of XAI methods
- 3. Atomic explanations alleviate cognitive load from the explainee

Category of follow-up question	Example questions
FQ1 : Input text edits	What if we removed word <i>w</i> from the input? What if the sentence <i>s</i> was in passive voice?
FQ2 : Scope restrictions	What change in the phrase p would flip the prediction? [AE] What is the most salient word in the <i>n</i> -th sentence? [FA]
FQ3 : Foil edits	What are the most salient tokens for class y' instead of y ? [FA] What training example from class y' influenced the prediction the most? [IE]

Inspired by Weld & Bansal (2019)

Daniel S. Weld and Gagan Bansal. The challenge of crafting intelligible intelligence.

Responsibilities of a Mediator

1. Generate bit-sized/atomic explanations

Responsibilities of a Mediator

- 1. Generate bit-sized/atomic explanations
- 2. Respond to the explainee in NL

Responsibilities of a Mediator

- 1. Generate bit-sized/atomic explanations
- 2. Respond to the explainee in NL
- 3. Understand a explainee's NL input

Mental model and user model

- 1. Generate bit-sized/atomic explanations
- 2. Respond to the explainee in NL
- 3. Understand a explainee's NL input
- 4. Keep track of the conversation and user's knowledge

Mental model and user model

- 1. Generate bit-sized/atomic explanations
- 2. Respond to the explainee in NL
- 3. Understand a explainee's NL input
- 4. Keep track of the conversation and user's knowledge
 - · Address misalignments between model and user expectation

Mental model and user model

- 1. Generate bit-sized/atomic explanations
- 2. Respond to the explainee in NL
- 3. Understand a explainee's NL input
- 4. Keep track of the conversation and user's knowledge
 - Address misalignments between model and user expectation
 - Consider user expertise (laypeople vs. domain experts vs. model developers)

Beyond Conversations

• Evaluating explanation dialogues is tricky (always domain- and goal-dependent!), but can serve as corrective feedback to the explained model

Beyond Conversations

- Evaluating explanation dialogues is tricky (always domain- and goal-dependent!), but can serve as corrective feedback to the explained model
- Training Mediators is an open question, because there are no explanation dialogue datasets as of yet (Similar: Information-seeking QA & Student-teacher dialogues)

Next steps: Implementation

Example use case in the medical domain from "TalkToModel" by Slack et al. (2022)

Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju, Sameer Singh. TalkToModel: Understanding Machine Learning Models With Open Ended Dialogues. 30 / 35

• We engineered a **blueprint** of **Mediators** for the task of sentiment analysis, **conversational agents explaining the behavior of neural models** in an **interactive** fashion.

- We engineered a **blueprint** of **Mediators** for the task of sentiment analysis, **conversational agents explaining the behavior of neural models** in an **interactive** fashion.
- We summarized the desiderata that HCXAI research put forward for dialogue-based explanations and highlighted that the current state of research in NLP has yet to catch up and address the gaps and pitfalls.

- We engineered a **blueprint** of **Mediators** for the task of sentiment analysis, **conversational agents explaining the behavior of neural models** in an **interactive** fashion.
- We summarized the desiderata that HCXAI research put forward for dialogue-based explanations and highlighted that the current state of research in NLP has yet to catch up and address the gaps and pitfalls.
- We recommend employing selection processes in a **complementary view of explanations** and centering the dialogue around **user expectations** by keeping track of their mental models via **rigorous, continuous evaluation**.

- We engineered a **blueprint** of **Mediators** for the task of sentiment analysis, **conversational agents explaining the behavior of neural models** in an **interactive** fashion.
- We summarized the desiderata that HCXAI research put forward for dialogue-based explanations and highlighted that the current state of research in NLP has yet to catch up and address the gaps and pitfalls.
- We recommend employing selection processes in a **complementary view of explanations** and centering the dialogue around **user expectations** by keeping track of their mental models via **rigorous, continuous evaluation**.
- We hope that this inspires **data collection** and **practical applications** of Mediators for NLP model behavior.

Thanks to my co-authors Ajay Madhavan Ravichandran and Sebastian Möller, the IJCAI-XAI reviewers and organizers as well as Mareike Hartmann, Aljoscha Burchardt and Jan Nehring for their valuable feedback!

